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ABSTRACT: 
The vascular endothelial growth factor (VEGF) plays a crucial role in a wide range of cellular functions 

particularly in the angiogenesis process. Overexpression of vascular endothelial growth factor receptor (VEGFR) 

leads to several disease including cancer. Inhibition of the VEGFR constitutes the major strategies for combating 

cancer growth. The current investigation was aimed at identifying potential inhibitor of VEGFR2 by using 

structure-based pharmacophore modelling using LigandScout 4.3. Advanced software. The pharmacophore 

hypothesis consisted of 4 hydrophobic, one hydrogen bond donor, and two hydrogen bond acceptors, which was 

built using the structure of cognate ligand of VEGFR2 (608). Further, the pharmacophore model was used to 

screen hit molecule against ZINC database using Pharmit. Further, 102 virtual hits were retrieved, which were 

submitted to molecular docking simulation by employing iDock software. Molecular dynamics simulation of 50 

ns for each three best hits complexed with VEGFR2 indicated that each ligand underwent minor conformational 

changes as indicated by the values of Root Mean Square Deviation (RMSD) and Root Mean Square Fluctuation 

(RMSF). Prediction of affinities employing Molecular Mechanics Poisson-Boltzmann Surface Area (MM-

PBSA) method identified one hit molecule (i.e. Lig5/ZINC33025328) with significant affinity lower than that of 

cognate ligand, which indicated its potential as a novel VEGFR2 inhibitor. 
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INTRODUCTION:  
Vascular endothelial growth factor receptor (VEGFR) is 

one of the protein kinases, which participates in the 

formation of new blood vessel or neovascularization 

including those from angioblasts (vasculogenesis) and 

those from pre-existing vasculature (angiogenesis) (1). 

Angiogenesis is known to play a key role in the 

progression of cancer as tumor growth requires much 

higher amount of new capillaries formation. Therefore, 

cancer is one of the diseases which can potentially be 

treated by curbing of VEGF signaling (2). The VEGF 

receptors consist of VEGFR-1 (Flt-1, feline McDonough 

sarcoma virus-like tyrosyl kinase-1), VEGFR-2 (Flk-

1/kinase domain receptor, KDR, fetal liver kinase-

1/Kinase insert Domain-Containing Receptor) and 

VEGFR-3 (Flt-4) (3-4). 
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VEGFR structures contain an extracellular segment, a 

transmembran segment, a juxtamembran segment, an 

intracellular protein-tyrosine kinase domain, and a 

carboxyterminal domain (5). The VEGFR1 has VEGF-

A, VEGF-B, and P1GF as endogenous ligands, while 

VEGFR2 and VEGFR3 share the same VEGF-C and 

VEGF-D as pro-angiogenic factors in addition to VEGF-

A, VEGF-E, and VEGF-F, which belong to VEGFR2 

(2,6). The VEGFRs can be found in vascular endothelial 

cells (VEGFR1 and VEGFR2) and in lymphatic 

endothelial cells (VEGFR3) (7). 
 

The catalytic domain of those VGFRs contains about 

330 amino acids as a result of additional inserts of about 

70 residues in addition to 250-300 amino acid of 

traditional catalytic domains (8). They have the smaller 

N-terminal lobe containing five β-strands (β1-β5) and a 

regulatory αC-helix, and the larger C-terminal lobe 

containing seven helices (αD- αI and αEF) and four short 

β-strands (β6-β9) (9). Between the two lobes, there is a 

cleft, where ATP nucleotide substrate interacts, which 

consisted of the two lobes residues. 
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Compared to VEGFR1 and VEGFR3, VEGFR2 is the 

most prominent activator of migration, proliferation, 

survival, and enhanced vascular permeability of 

endothelial cell (1). It displays predominant protein 

kinase activity originating from autophosphorylation on 

six tyrosine residues of the receptor within the activation 

loop (1,10,11) when interacting with its endogenous 

ligands (12). The VEGF/VEGFR2 signalling pathway is 

often overexpressed in the growth and metastasis of 

human cancer. Therefore, VEGFR-2 is thought to be the 

key target for discovering small molecule inhibitors 

against tumor-associated angiogenesis. 

 

Many small molecules inhibitors of VEGFR-2 protein 

kinases have been developed such as imatinib, sorafenib, 

and sunitinib. Imatinib has been known for its use to 

treat gastrointestinal stromal tumors and chronic 

myelogenous leukemia (CML) since 2001 (13). 

Sorafenib was approved by Food and Drug 

Administration (FDA) in 2005 for the treatment of 

metastatic renal cell carcinoma (1). Sunitinib was taken 

for clinical use in 2006 for the treatment of metastatic 

renal cell carcinoma and gastrointestinal stromal tumors 

(14). However, drug resistance and low selectivity 

remain a challenge and new small molecule inhibitors of 

VEGFR2 are still urgently needed. 

 

The present work is aimed to identify the potential of 

VEGFR2 inhibitors by using pharmacophore-based 

virtual screening method. The pharmacophore-based 

virtual screening, which use a crystal structure of 

protein-ligand complex, has been widely recognized as 

an integral part of drug discovery stages (15-20). The 

method was combined with docking and molecular 

dynamics (MD) simulation to reveal the ligand binding 

modes and their conformational changes during a certain 

period of time (12-24). Finally, binding affinity 

evaluation of ligand was performed by using Molecular 

Mechanics Poisson Boltzmann Surface Area (MM-

PBSA) method. 

 

COMPUTATIONAL METHODS: 

Pharmacophore modeling: 

The pharmacophore model was developed using 

LigandScout 4.3 software (25). The software builds 

models of pharmacophore using 3D structure of protein-

ligand complex. In this case, VEGFR2 kinase domain 

structure in complex with an inhibitor (a nicotinamide, 

608) was downloaded from RCSB Protein Data Bank 

with the PDB code 2P2I (26). Validation of the 

pharmacophore hypothesis was performed by using 

actives and decoys compounds, which were taken from 

the Directory of Useful Decoys-Enhanced (DUD-E) 

(27). Further, the built pharmacophore model was 

employed to identify hits in the ZINC15, a free database 

of compounds (28) using Pharmit web server 

(http://pharmit.csb.pitt.edu/) (29). 

 

Molecular docking, molecular dynamics studies, and 

prediction of the binding free energy: 

Molecular docking for 102 compounds on VEGFR2 was 

performed using iDock software (30-32). The iDock 

essentially uses AutoDock Vina scoring function but 

with additional features, enabling large number of 

compounds to be screened. Therefore, it was efficient 

enough to predict ligand binding modes and affinity at 

affordable computational cost. Docking protocol was 

validated by redocking the native inhibitor of VEGFR2 

(608). The binding site of VEGFR2 was set following 

the coordinates of 608, while the grid box was applied 

with a size of 22.5 × 22.5 × 22.5 Å in XYZ dimensions. 

 

Further analysis was performed based on the binding 

mode and affinity of each compound and three top 

compounds having the highest binding affinities were 

subjected for further molecular dynamics (MD) 

simulation. 

 

Four molecular dynamics (MD) simulations were 

conducted using three best hits and one native ligand 

docked complexes. MD studies were performed using 

the PMEMD engine of Amber 16 package (33,34). 

Protein and ligand were parameterized using the force 

fields of ff14SB (35) and GAFF (36) as well as AM1-

BCC (37). All system preparation for MD simulation 

and binding free energy prediction were explained in our 

previous works (38,39). 

 

RESULTS AND DISCUSSION: 
Virtual screening methods has been widely known 

particularly in the early drug discovery processes. The 

method involves the exploitation of computer-aided 

techniques to identify potential inhibitors for specific 

therapeutic targets (39). Virtual screening can be divided 

into structural-based approach and ligand-based 

screening, including pharmacophore modelling. The 

pharmacophore modelling was then grouped as 

structural-based and ligand-based approaches. The 

structure-based pharmacophore modelling uses protein-

ligand complex, while the ligand-based approach only 

utilizes ligand structure. The present study employs 

structure-based pharmacophore modelling to search for 

hits of VEGFR2. Structure of VEGFR2 and a 

nicotinamide (608) was used to build pharmacophore 

model consisting of four hydrophobic, two H bond 

acceptor, and one H Bond donor. Figure 1 shows the 

pharmacophore model. 
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Figure 1: 3D pharmacophore features extracted from LigandScout 

4.3, which consisted of the hydrophobic (yellow), hydrogen bond 

donor (green), and hydrogen bond acceptors (red sphere). 

 

The validation of pharmacophore model was conducted 

by screening the model against internal database, which 

consisted of 619 actives and 25247 decoys. The result 

showed that the value of Receiver Operating 

Characteristic-Area Under Curve (ROC-AUC) is 0.51, 

while GH-score is 0.75. Therefore, the developed 

pharmacophore hypothesis was valid. Fig. 2 displays the 

ROC curve. 
 

 
Figure 2: The receiver operator characteristic curve with area 

under curve (AUC) 100%=0.51. 

 

Further, the pharmacophore model was used for 

screening hits in ZINC database using Pharmit 

(http://pharmit.csb.pitt.edu/), with “Max Hits per 

Conf”=1, yielded 102 hits. The molecular docking of all 

102 hit compounds on VEGFR2 gave poses and 

affinities in the range of −4.11 and −13.02 kcal/mol, 

while redocking of 608 yielded affinity of −12.45 

kcal/mol. Two hit compounds displayed affinities lower 

than that of 608, i.e. Lig9/ZINC33258090 (E=−13.02 

kcal/mol) and Lig5/ZINC33025328 (E= −12.96 

kcal/mol). 
 

Redocking of 608 produced a pose which is essentially 

identical with the X-ray conformation with root mean 

square deviation (RMSD) of 1.04 Å, indicating that the 

docking protocol was valid (40). The docked 

conformation reproduced all three experimental 

hydrogen bonds (hbonds) with Glu885, Cys919, and 

Asp1046. Figure 3 presents the 608 poses of both x-ray 

and docked structures. 

 

 
Figure 3: Superimposed structures of docked (green) and x-ray 

(blue) of 608. The green-colored dashed lines indicate the hydrogen 

bond interactions. 

 

Furthermore, three best docked hits were selected, which 

is Lig9/ZINC33258090, Lig5/ZINC33025328, and 

Lig90/ZINC09441733. Figure 4 presents the chemical 

structures of three best hit compounds resulted from 

molecular docking. 
 

 
Figure 4: The chemical structures of best 3 hit compounds. 

 

The Lig9/ZINC33258090 interacted with crucial amino 

acid residues of VEGFR2. The amino group of 

Lig9/ZINC33258090 contributed as hbond donor when 

interacting with Cys919 residue. The Cys919 residue 

was also observed to contribute in hbond formation with 

pyrimidine group of Lig5/ZINC33025328. Meanwhile, 

the same residue interacted through van der Waals 

interaction with Lig90/ZINC09441733. As previously 

described, Cys919 residue constituted crucial amino acid 

residues of active site, which formed hbond interaction 

with 608. Figure 5 shows the interaction of Lig5, Lig9, 

Lig90 in the VEGFR2. 
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Figure 5: The interaction of Lig5, Lig9, Lig90 in the VEGFR2 with hydrogen bonds (green dashed lines). 
 

Molecular dynamics simulations: 

MD simulation was performed for each VEGFR2-ligand 

complex to assess the conformational changes for 50 ns. 

The values of root mean square deviation (RMSD) were 

calculated to verify the stability of complex. Figure 6a 

and 6b display RMSD values of heavy atoms (Cα, C, N, 

O) of the protein and ligand, respectively, showing that 

all ligands maintained the stability throughout 

simulation. The Lig5 and Lig90 reached equilibrium 

quickly with stable RMSD around 2 Å. Lig9 slightly 

fluctuated at around 30 ns. However, it became stable for 

the rest simulation. Interestingly, all hits showed more 

stable movement than cognate ligand (608). 
 

 
 

 
Figure 6: RMSD values of heavy atoms of (a) the protein and (b) 

ligand, respectively, for (a) LIG5 (red), Lig9 (green), Lig90 (blue), 

and 608 (purple). 
 

Figure 7 depicts root mean square fluctuation (RMSF) 

plot for 50 ns MD run. It shows that ligand binding 

induced similar pattern of amino acid residues 

fluctuation and minor change during MD simulation. 

The highest RMSF value was at the His289 (His1178) 

corresponding to the carboxy terminal of the protein. 

Peak at around Ala118 (Ala991) was loop region, which 

was principally more fluctuated than other regions of 

protein. 
 

 
Figure 7: RMSF plot for 50-ns MD simulation: (a) LIG5 (red), 

Lig9 (green), Lig90 (blue); (b) 608 (purple). 

 

Monitoring of the hbonds during dynamics runs showed 

that the hbonds interactions with Cys919 attained 

occupancies of 38.60% and 22.25% in the 

Lig9/ZINC33258090 binding, while those in the 

Lig90/ZINC09441733 attained 11.98% and 5.13% 

occupancies. The lower occupancy was detected as 

3.24% in the binding of Lig5/ZINC33025328. 

Interestingly, Lig5/ZINC33025328 showed high hbond 

occupancies with Glu885 and Asp1046 residues each 

with 57.93% and 20.09%, respectively. In brief, the 

moderated occupancies were recorded in the binding of 

Lig5/ZINC33025328 and Lig9/ZINC33258090, while 

those in the binding of Lig90/ZINC09441733 showed 

lower occupancies. Table 1 shows the hbond 

occupancies during 50-ns simulation. 
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Table 1: The hydrogen bond occupancies during 50-ns MD simulation. 

Ligand Acceptor Donor Occupancy (%) Distance (Å) Angle 

Lig9/ZINC33258090 Lig@O1 Cys_919@H: Cys_919@N 38.60 2.84 158.77 

Cys_919@O Lig@H24: Lig@N4 22.25 2.86 157.67 

Lig5/ZINC33025328 Glu_885@OE1 Lig@H5: Lig@N 57.93 2.84 156.27 

Lig@O Asp_1046@H: Asp_1046@N 20.09 2.89 158.37 

Lig@N3 Cys_919@H: Cys_919@N 3.24 2.95 159.02 

Lig90/ZINC09441733 Lig@N3 Cys_919@H: Cys_919@N 11.98 2.94 156.93 

Lig@N4 Cys_919@H: Cys_919@N 5.13 2.95 156.64 

 
Table 2: The binding free energy terms (kcal/mol). 

Ligand ΔEELE ΔEVDW ΔEPBCAL ΔEPBSUR ΔEPBTOT 

608 −28.82±3.58 −58.42±3.13 52.25±2.84 −4.99±0.08 −39.98±3.34 

Lig5 −25.23±3.28 −67.32±2.73 50.84±2.82 −5.65±0.09 −47.37±3.74 

Lig9 −14.68±4.54 −67.98±3.40 52.79±7.64 −6.12±0.11 −35.99±4.32 

Lig90 −11.90±4.54 −63.04±3.38 46.29±5.15 −5.40±0.14 −34.05±4.09 
 

Free binding energy calculations: 

The binding free energy was calculated using MM-

PBSA method to reveal each individual energy 

contribution to the complex stability. The electrostatic 

(ΔEELE), van der Waals (ΔEVDW), polar solvation energy 

(ΔEPBCAL), and non-polar solvation energy (ΔEPBSUR), for 

each c omplex are presented in Table 2. The total 

binding energy (ΔEPBTOT) for each complex was negative 

(from −34 to −47 kcal/mol), indicating the attraction 

interaction. Interestingly, Lig5 achieved the highest 

affinity among other hits. The electrostatic energy, van 

der Waals energy, and non-polar solvation energy were 

favourable for ligand binding, while polar solvation 

energy opposed ligand binding. 
 

CONCLUSION: 
Structure-based pharmacophore modelling was 

conducted based on protein-ligand complex structure. 

The pharmacophore hypothesis was used to screen hit in 

ZINC database. It obtained 102 hits and molecular 

docking was conducted to probe the binding mode of 

each hit. Three best docked hits were subjected to 

molecular dynamics simulation, showing the stable 

changes during 50 ns. The MM-PBSA method identified 

one potential hit (Lig5/ZINC33025328) as VEGFR2 

inhibitor. The van der Waals and electrostatic 

interactions were favorable for ligand binding. The 

present study suggests one potential ligand for further 

experiment validation. 
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