RESEARCH ARTICLE | MAY 30 2023

Application of iron sand magnetic material (MM) and silica coated iron sand magnetic material (MM-SiO₂) as Cd²⁺ adsorber in aqueous system 🕗

Alrum Armid; Muhammad Ramadhan; Anugrah Ricky Wijaya; ... et. al

Check for updates

AIP Conference Proceedings 2704, 030003 (2023) https://doi.org/10.1063/5.0138615

CrossMark

Application of Iron Sand Magnetic Material (MM) and Silica Coated Iron Sand Magnetic Material (MM-SiO₂) as Cd²⁺ Adsorber in Aqueous System

Alrum Armid^{1, a)}, Muhammad Ramadhan^{2, b)}, Anugrah Ricky Wijaya^{3, c)}, Darwin Ismail^{1, d)}, and Fahmiati^{1, e)}

¹Department of Chemistry, Faculty of Mathematics and Natural Sciences, Halu Oleo University, Anduonohu Kendari 93232, Indonesia ²Chemistry Graduate Program, Halu Oleo University, Anduonohu Kendari 93232, Indonesia ³Department of Chemistry, Faculty of Mathematics and Natural Sciences, Malang University, Malang, Indonesia

> ^{a)} armid04@gmail.com ^{b)} muhammadramadhangolongan@gmail.com ^{c)} anugrah.ricky.fmipa@um.ac.id ^{d)} Darwin.ismail@uho.ac.id ^{e)} Corresponding author: fahmiati05@gmail.com

Abstract. The adsorption of Cd^{2+} using iron sand magnetic material (MM) and silica-coated magnet material (MM-SiO₂) was carried out using the batch method to determine the effect of pH, contact time, and concentration. The optimum adsorption of Cd^{2+} metal ions by MM and MM-SiO₂ occurred at pH 6 and pH 5, respectively. The adsorption occurs quickly until the contact time of 60 minutes with the adsorption capacity of 3.53 mg/g and 7.24 mg/g, respectively. Adsorption of Cd^{2+} metal ion by MM tended to follow the first-order pseudo reaction kinetics with the k_1 is $3.9x10^{-2}$ g.mg⁻¹.min⁻¹ while MM-SiO₂ follow the second-order pseudo reaction kinetics with k_2 is $12.2x10^{-3}$ g.mg⁻¹.min⁻¹. The maximum adsorption of Cd^{2+} metal ion by MM and MM-SiO₂ occurred at a concentration of 200 mg/L with an adsorption capacity of 14.08 mg/g and 22.063 mg/g respectively and followed the Langmuir and Temkin adsorption isotherms, respectively.

INTRODUCTION

The heavy metal cadmium is a polluting metal found in the paint industry, casting of zinc, in the refining of tin and copper [1]. Exposure to cadmium shall increase high blood pressure, kidney and respiratory system disorders, and death at very high levels of contaminants [2]. The threshold limit value for cadmium in water is ~5 ppb [3]. Several techniques have been applied to reduce heavy metal contents in water samples, including coagulation and adsorption. The adsorption method is considered very easy to apply and does not produce toxic gases. The adsorption process on heavy metals occurs due to heavy metal ions being attached to functional groups of the adsorbent surface such as -COOH, -OH, -SH, and -NH groups [4].

Iron sand's magnetic material (Fe3O4) is often used as an adsorbent. The advantage of Fe_3O_4 is its magnetic properties, it is straightforward to separate using an external magnet [5]. However, iron sand's magnetic material

2nd International Conferences on Sciences and Mathematics (2nd ICSM) AIP Conf. Proc. 2704, 030003-1–030003-7; https://doi.org/10.1063/5.0138615 Published by AIP Publishing. 978-0-7354-4510-9/\$30.00

030003-1

properties are very easily oxidized in air to produce maghemite (γ -Fe₂O₃). Therefore, an inert and biocompatible material such as silica is needed to coat magnetic materials. Silica has been widely used as an adsorbent to adsorb heavy metals. The silica surface contains active groups of silanol (\equiv Si-OH) and siloxanes (\equiv Si-O-Si \equiv), thus, it allows silica to be modified with the Fe-OH group present in an iron sand magnetic material [6-7].

This research carried out the coating of magnetic material with silica using the sol-gel method, then performed the adsorption test using a Cd^{2+} ion solution under parameters variation of pH, time, and concentration, as well as the determination of the adsorption capacity and adsorption order. Coating magnetic materials using silica can increase the adsorption capacity since it may expand the surface area and the active site of the adsorbent.

METHODS

The chemicals used in this study were a solution of sodium silicate, hydrochloric acid, sodium hydroxide, and a standard solution of cadmium (1000 mg/L). All chemicals are pro analysis (p.a). The buffer solution is made from a mixture of potassium chloride, potassium hydrogen phthalate, and hydrochloric acid. Magnetic material (MM) was picked up from iron sand of Bugel Beach, Yogyakarta, Indonesia.

The iron sand was washed with purified water and dried for 18 hours at 95°C. The MM from the iron sand was then separated using a regular magnet. The obtained MM was ground with a mortar and sieved (200 mesh). MM smaller than 200 mesh was washed with purified water, then dried for 18 hours at 95°C. MM was refluxed with 4 M of sodium hydroxide solution for 2 hours at 75°C, then washed with purified water until neutral pH was reached and final-dried in an oven at 95°C (18 hours). Synthesis of silica-coated iron sand magnetic materials was done by using 1 gram of MM activated with 1 mL of 1 M hydrochloric acid, then 2 mL of sodium silicate (13%) solution followed by the addition of ± 2 mL of 1 M hydrochloric acid to form sol-gel. The materials were sonicated by using an ultrasonicator and aging for 18 hours, then dried at 75°C for 5 hours to produce the so-called silica-coated magnetic material (MM-SiO₂) [8]. Adsorption of Cd²⁺ metal ion on MM and MM-SiO₂ as an adsorbent was done with a variation of pH, concentration, and contact time. The adsorption process was conducted by batch method. The non-adsorbed Cd²⁺ was analyzed by using an atomic absorption spectrophotometer (AAS). The adsorption capacity (Q_e) and adsorption efficiency (EA) of Cd²⁺ metal ions at equilibrium conditions were determined using equations (1) and (2).

$$Q_e = \frac{C_0 - C_i}{V} V \tag{1}$$

$$EA(\%) = \frac{C_0 - C_i}{C_0} \times 100$$
(2)

with Q_e (mg/g) stands for the capacity of adsorption, C_o (mg/L) belongs to initial concentration of Cd²⁺, C_i (mg/L) is concentration of Cd²⁺ after adsorption, V is volume of solution (liter), and m is adsorbent mass (milligram).

RESULTS AND DISCUSSION

Synthesis of MM and MM-SiO2 Adsorbents

(a)

(b)

FIGURE 1. The appearance of (a) MM and (b) MM-SiO₂

FIGURE 2. The sol-gel mechanism of Fe-O-Si formation on the surface of magnetite material [9]

Cd²⁺Adsorption Under Controlled pH

Figure 3 shows the effect of pH on the ability of MM and MM-SiO2 adsorbents to adsorb Cd^{2+} from the solution system. The adsorption capacity (Q_e) of the MM adsorbent increased from 0.92 mg/g (pH 3) to 5.21 mg/g (pH 6) and decreased to 3.48 at pH 8. However, the adsorption capacity (Q_e) of the MM-SiO₂ was found 5.08 mg/g, 9.94 mg/g, and 5.96 mg/g at pH 3, 5, and 8, respectively. The high adsorption capacity of MM-SiO₂ adsorbent compared to MM suggests that the addition of Si-OH group of silica in MM is able to rise the ability of the adsorbent to adsorb Cd^{2+} ion. At pH 8, both adsorbents experienced a decrease in the ability to adsorb Cd^{2+} which was probably due to the formation of complex compounds between Cd^{2+} and OH⁻ ions. At acidic pH (pH 1 to 4), the formation of silanol groups (Si-OH) increased due to the large number of H⁺ ions in solution [10]. The increase in H⁺ ions will suppress the release of hydrogen atoms from the silanol group, which results in a reduction in the number of adsorbed Cd^{2+} metal ions. Figure 3 recommends that adsorption was performed at pH 6 for MM and pH 5 for MM-SiO₂ in this study.

Figure 3. Adsorption of Cd²⁺ on MM and MM-SiO₂ adsorbent under controlled pH. Experimental setting: 10 mg adsorbent per 10 mL of 25 mg/L Cd solution, 2 hours of contact time at room temperature

Adsorption Kinetics

A contact time of 0-360 minutes was applied to examine the adsorption kinetics of Cd^{2+} on both MM and MM-SiO₂ adsorbents. Cd^{2+} ions were absorbed more rapidly at the start of contact, before reaching equilibrium at 60 min (Fig. 4). Figure 5 shows the pseudo-first order and pseudo-second order adsorption kinetics when applied to the case of Cd^{2+} adsorption onto MM and MM-SiO₂ adsorbents.

$$\log (q_{e} - q_{t}) = \log q_{e} - \frac{k_{1}}{2,303}t$$
(3)

$$\frac{t}{q_{t}} = \frac{1}{k_{2}q_{e}^{2}} + \frac{1}{q_{e}}t$$
(4)

where k stands for the adsorption rate constant (g.min⁻¹/mg); k_1 for pseudo-first order and k_2 for pseudo-second order, q_t is the amount of Cd(II) being adsorbed (mg/g), and q_e is the capacity of adsorption at equilibrium (mg/g). The values of k_1 and k_2 can be quantified based on the plot of the relationship between log ($q_e - q_t$) versus t and t/ q_t versus t of the equations 3 and 4, respectively. The plot results are tabulated in Table 1.

Figure 4. Effect of contact time on Cd²⁺ adsorption onto MM and MM-SiO₂ adsorbents. Experimental setting: 10 mg adsorbent per 10 mL of 25 mg/L Cd solution, 0-360 minutes of contact time at room temperature

Figure 5. Kinetic parameters curve of (a) Pseudo-first order and (b) Pseudo-second order

Adsorbent	-	Pseudo-First-Order		Pseudo-Second-Order							
	q _e (mg/g)	k1 (g.mg ⁻¹ .min ⁻¹)	\mathbb{R}^2	q _e (mg/g)	k ₂ (g.mg ⁻¹ .min ⁻¹)	\mathbb{R}^2					
MM	5.13	3.90×10 ⁻²	0.934	8.89	1.70×10 ⁻³	0.807					
MM-SiO2	4,81	2.35×10 ⁻²	0.906	9.69	12.20×10 ⁻³	0.999					

TABLE 1. Values of k1 and k2 for Cd2+ adsorption on MM and MM-SiO2 adsorbents

Adsorption Isotherm

The model of adsorption interaction, capacity of adsorption, and level of accumulation of Cd^{2+} ions on the adsorbent can be approached using isotherm studies [11]. Investigation result of Cd^{2+} adsorption isotherms (concentration = 5-200 mg/L) on MM and MM-SiO2 adsorbents is shown in Figure 6. The capacity of adsorption of Cd^{2+} ion onto MM and MM-SiO2 adsorbents is 4.213 mg/g and 7.237 mg/g, respectively at the initial concentration (5 mg/L) of Cd^{2+} solution. The capacity of adsorption raised to 14.084 mg/g and 22.063 mg/g, respectively when reaching the maximum concentration (200 mg/L) of Cd^{2+} due to the silica coating effect.

FIGURE 6. Effect of Cd²⁺ initial concentration on adsorption onto MM and MM-SiO₂. Experimental setting: 10 mg adsorbent per 10 mL of 5-200 mg/L Cd solution, 2 hours of contact time at room temperature

The Langmuir adsorption isotherm is used to provide information that an adsorption process occurs chemically by forming a chemical bond between the active groups of the adsorbent and the adsorbate. Langmuir isothermal adsorption assumes that the maximum adsorption capacity occurs at an adsorbent's active sites in a uniform (homogeneous) surface layer. Freundlich isotherms model assumes adsorption is carried out physically. This model provides the postulate that adsorption occurs in more than one surface layer (multilayer) [11], because the adsorption process occurs on a heterogeneous surface, and each site has different energy and adsorption capabilities.

The adsorption isotherm model which can explain the adsorption process that occurs between physical and chemical processes is the Temkin adsorption isotherm. This model can provide information in the adsorption process where chemical bonds are formed on the surface of the heterogeneous [12]. The isotherm adsorption equations of Langmuir and Freundlich are formulated at equations (5) and (6), respectively, while that of the Temkin model follows equations (7) and (8).

Langmuir:
$$\frac{1}{q_e} = \frac{1}{K_L q_{max}} \frac{1}{C_e} + \frac{1}{q_{max}}$$
(5)

Freundlich:
$$\ln q_e = \ln K_F + \frac{1}{n} \ln C_e$$
 (6)

Temkin:
$$q_e = B \ln A + B \ln C_e$$
 (7)

$$q_e = \frac{RT}{b_T} \ln C_e + \frac{RT}{b_T} \ln K_T$$
(8)

where C_e belongs to the metal ion concentration when it reaches equilibrium (mg/L), q_{max} (mg/g) is the capacity maximum of adsorption, and K_L (L/mg) is the Langmuir constant which corresponds to the adsorption energy, K_L is obtained from the slope and intercept determination of the linear plot C_e/q_e versus C_e . K_F (L/mg) is the Freundlich constant, n is the heterogeneity factor (the intensity of the adsorbent's interaction with the adsorbate). K_F is derived from the slope and intercept of a linear plot of $\ln q_e$ versus $\ln C_e$. K_T is the bond equilibrium constant (L.mol⁻¹) associated with the maximum bond energy, $B = RT/b_T$, where R is the general gas constant (8.314 JK⁻¹.mol⁻¹), T is the temperature in Kelvin, b_T is the adsorption heat value. A is the bond equilibrium constant, and B is related to the calorific value of the adsorption. A and B can be generated the intercept, and the slope from the q_e versus $\ln C_e$ linearity plot, the result of the straight-line slope is the same as RT/b_T and the intercept ($RT \ln K_T$)/ b_T .

FIGURE 6. Adsorption isotherm curve of (a) Langmuir, (b) Freundlich, and (c) Temkin

The Langmuir adsorption isotherm parameters in Table 2 shows that K_L and q_{max} of the adsorption Cd^{2+} on MM and MM-SiO₂ are 3.6×10^{-3} L/mg, 14.14 mg/g, and 1.9×10^{-1} , 15.95 mg/g, respectively, with the R² of 0.997 and 0.981, respectively. Moreover, the Freundlich isotherm adsorption parameter such as K_F , n, and R² for Cd^{2+} adsorption on MM and MM-SiO₂ adsorbent are 9.63 L/mg; 1.87; 0.938 and 30.07×10^{-1} ; 2.35; 0.962, respectively. The MM-SiO₂ adsorbent more closely follows the Temkin isothermal equation with R² is 0.989, this provides information that the adsorption process takes place chemically on a heterogeneous surface of the adsorbent. The Temkin constant (K_T) for adsorption by the MM-SiO₂ adsorbent was obtained at 15.62×10^{-1} L.mg⁻¹ with an average adsorbent-adsorbate (b_T) interaction energy of 650.5 J/mol. The addition of silica to the magnetic material of iron sand makes the magnetic material's surface undergo a modification of non-uniform functional groups, thus allowing chemical bonds to occur on a heterogeneous surface [13].

Adsorbent	Adsorption Isotherm												
	Langmuir			Freundlich			Temkin						
	K _L (L/mg)	q _{max} (mg/g)	\mathbb{R}^2	K _F (L/mg)	n	\mathbb{R}^2	K _T (L/mg)	b _T (J/mol)	\mathbb{R}^2				
MM	3.6×10 ⁻³	14.14	0.997	9.63×10 ⁻¹	1.87	0.938	4.49×10 ⁻¹	872.6	0.936				
MM-SiO2	1.9×10^{-1}	15.95	0.981	30.07×10 ⁻¹	2.35	0.962	15.62×10 ⁻¹	650.5	0.989				

TABLE 2. Adsorption isotherm parameters of Cd^{2+} adsorption on MM and MM-SiO₂ adsorbents.

CONCLUSION

The adsorption of Cd^{2+} onto MM and MM-SiO₂ adsorbents is strongly pH-dependent, quite fast at the beginning, and reaches equilibrium within 60 minutes. Adsorption of Cd^{2+} metal ion by MM tended to follow the first-order pseudo reaction kinetics with the k_1 is 3.9×10^{-2} g.mg⁻¹.min⁻¹ while MM-SiO₂ follow the second-order pseudo reaction kinetics with k_2 is 12.2×10^{-3} g.mg⁻¹.min⁻¹. Coating of MM using silica can increase the adsorption capacity of MM-SiO₂ due to the silanol and siloxane functional group. The Langmuir, Freundlich, and Temkin isothermal adsorption can be applied for determining the adsorption isotherm models.

ACKNOWLEDGMENTS

The authors wish to acknowledge appreciatively the monetary support provided by the Directorate General of Higher Education (DGHE) of Indonesia through the Research Grant for Penelitian Kompetensi Dasar.

REFERENCES

- 1. H. Javadian, F. Ghorbani, H. Tayebi, and S. M. H. Asl, Arabian J. Chem. 8, 837–849 (2015).
- 2. R. E. Garner and P. Levallois, Environ. Res. 155, 64–72 (2017).
- 3. G. K. Kinuthia, V. Ngure, D. Beti, R. Lugalia, A. Wangila and L. Kamau, Sci. Rep. 10, 1–13 (2020).
- F. Dhaouadi, L. Sellaoui, H. E. Reynel-Ávila, V. Landín-Sandoval, D. I. Mendoza-Castillo, J. E. Jaime-Leal, E. C. Lima, A. Bonilla-Petriciolet and A. B. Lamine, Environ. Sci. Pollut. Res. 28, 30943–30954 (2021).
- Ł. Jakubski, P. Grzybek, A. Chrobak, E. Haye, J. F. Colomer, K. Konieczny, R. Turczyn and G. Dudek, Sep. Purif. Technol. 277, 119038 (2021)
- 6. N. Nuryono, N. M. Rosiati, B. Rusdiarso, S. C. W. Sakti and S. Tanaka, Springerplus 3, 1–12 (2014).
- 7. S. Sulastri, N. Nuryono, I. Kartini and E. S. Kunarti, Jurnal Penelitian Saintek, 19, 33–44 (2014).
- 8. F. Fahmiati, N. Nuryono and S. Suyanta, Asian J. Chem. 30, 1805–1810 (2018).
- 9. A. Durdureanu-Angheluta, R. Ardeleanu, M. Pinteala, V. Harabagiu, H. Chiriac and B.C. Simionescu, Dig. J. Nanomater. Bios., **3**, 33–40 (2008).
- 10. M. Chellappa and U. Vijayalakshmi, Mater Today: Proc. 9, 371–379 (2019).
- 11. B. M. Lowe, C. K. Skylaris and N. G. Green, J. Coll. Inter. Sci. 451, 231–244 (2015).
- 12. Y. Zhou, X. Liu, L. Tang, F. Zhang, G. Zeng, X. Peng and J. Zhang, J. Haz. Mat. 333, 80-87 (2017).
- 13. N. Nuryono, N. M. Rosiati, A. L. Rettob, S. Suyanta and Y. Arryanto, Indones. J. Chem. 19, 395-404 (2019).